

FAULT CURRENT CALCULATION FORM

Permit Number: Date:		Project Name:				
		Contractor Name:				
ins	e following fault current calculation form tructions and impedance table on rever fault current is below the minimum equ	se side. Continue				
A.	UTILITY TRANSFORMER	Value		Total Impedance	Fault Current	
2.	Rated Capacity Secondary Voltage Nameplate % Impedance Or	V	_KVA Ø %	impedance	ourient	
4. 5.	Transformer Short Circuit Amps Ohmic Impedance (V (see V defined in	in step 1 page 2)	_Amps divided by th 	•	os) s (step #1)	
В.	SERVICE CONDUCTORS					
2. 3. 4.	Type of Conduit (metal or PVC) Impedance per 1000' Number of Parallel Runs	Type O' x length divided	_ _Ohms per _	1000' allel runs x 1000)		
8.	Total Impedance to Source (A 5 + B 6) Fault Current to Load Terminals (V (see	ee V defined in st	 ep 1 page <u>2</u>)	Oh	ams (step #2) amsAmps(step #3)	
C.	SERVICE ENTRANCE EQUIPMENT					
	Equipment Rating Interrupting Rating		_Amps		A.I.C.	
D.	FEEDER CONDUCTOR					
1. 2. 3. 4. 5. 6.	Conductor Size Length Type of Conduit Impedance per 1000' Number of Parallel Runs Conductor Impedance (Imp. Per 1000)		peFtOhms peby # of para			
7. 8.	Total Impedance to Source (B 7 + D 6) Fault Current at Load Terminals (V (see		ep 1 page 2)	Ohms	Amps	
_	FEEDER PANEL				(step #3)	
⊏.						
1. 2.	Equipment Rating Interrupting Rating		Amps		A.I.C.	

TRANSFORMER REPLACEMENTS: Replacements that result in a higher possible fault current, than that of the existing equipment, SHALL be addressed to this department, prior to reconnection of existing service equipment.

-----FAULT CURRENT CALCULATION INSTRUCTIONS------

(STEP #1)

Transformer Secondary (I.C. Rating) at its rated voltage, calculate Z-ohms as follows:

Transformer Z-ohms =
$$\frac{V}{Short \ Circuit \ Current}$$
 ("V" as defined below)

Short Circuit Current

 $\frac{V}{120/240V}$ 1 \varnothing 3-wire 120

208Y/120V 3 \varnothing 4-wire 120

240 Delta 3 \varnothing 4-wire 140

480Y/277V 3 \varnothing 4-wire 277

480 Delta 3 \varnothing 3-wire 277

(STEP #2) (Using Cable Impedance Data Table Below)

(STEP #3)

Service I.C. = "V" (total Z = transformer Z + cable Z)
$$Total Z$$

(STEP #4)

Note:

Continue these steps until each panel has been addressed or the fault current is below the minimum equipment rating.

CABLE IMPEDANCE DATA (ohms per 1000 feet)

Conductors	Copper	Aluminum

AWG or KCMIL	Magnetic Duct	Non-Magnetic Duct	Magnetic Duct	Non-Magnetic Duct
#2	0.20	0.19	0.32	0.32
#1	0.16	0.15	0.25	0.25
#1/0	0.12	0.12	0.20	0.20
#2/0	0.10	0.10	0.16	0.16
#3/0	0.079	0.077	0.13	0.13
#4/0	0.063	0.062	0.10	0.10
250KCM	0.054	0.052	0.086	0.085
300KCM	0.045	0.044	0.072	0.071
350KCM	0.039	0.038	0.063	0.061
400KCM	0.035	0.033	0.055	0.054
500KCM	0.029	0.027	0.045	0.043
600KCM	0.025	0.023	0.038	0.036
750KCM	0.021	0.019	0.031	0.029

Prepared by Bob Johnston, Electrical Plans Examiner, City of Bellevue

Revised 7-15-2002 Page 2